Quantum Field Theory

Set 5: solutions

Exercise 1:

We want to compute the Noether charge associated to rotations for a massive vector field. Lorentz transformations
act as usual:
1
't = A ¥ ~ gt +wh at = ot — §€Zﬂw°‘ﬂ = ehy=— (65@; — 55:%[) ,
Al(x) =AJA (3) = A S A (A 2) = (85 +w)) Ay (2™ — wha'®) ~ A(a)) + w) Ay () — w8, Ay ().
Dropping the primes on z’ we have:

1
Ap(@) = Ap(w) = SwPDpap = Dpap = (lpads = lpsAa) + (ads = 250a) Ap.

Notice that we have defined €, 5 and A, op without the factor 1/2. It is clear that all the definitions are equivalent,
as long as they are all consistent, however this is the choice that provides the correct normalization of the generators
of rotations: [J;, J;] = i€;jxJi. The Noether current is then:

oL
Tis = Gy S = il = ~F"8 s + (B = 852 £
np

= —F" (0 Ag + 2a034,) + F* (15 Ao + 2300 Ay) + (S = o) L.

We can now focus on the current associated to rotations: (af) = (ij). In addition we take p = 0 in order to
obtain the charge:

Qij = /d3$ JZOJ = — (/ d3.%' (FOzAJ + FommiajAm) — (’L L d j)) = /d?’CL' (—FOZ‘AJ' + Fom.’L'Z‘ajAm) — (Z < j),

where we have lowered all the indices. We finally define the three generators of rotations as:

1
Jk = §Eiijij = eijk/d?’x (_FOiAj + Foml'zajAm) .
From now on we will keep all indices down. Recalling the definition of the conjugate momenta (ITI* = —F%) we

can also rewrite:

Jk = €ijk /dsx (HZAJ - Hm I‘ZajAm) .
One can check that this definition is correctly normalized.

By intuition we can guess the form of the angular momentum. This is most easily done by splitting it in the
orbital part L; and the spin part S;:

Since we are dealing with a free theory, Noether currents are quadratic are quadratic in terms of ladder operators,
i.e. they have the form ~ aa'; indeed operators of the kind ~ (a)™*"(a")™ and (a)™(a®)™*", n > m, would
change the number of particles, while we expect the number of particles to commute with the angular momentum,
while ~ (a)™(a’)™ operators give non vanishing contributions only on n > m particle states, while in a free theory
we expect the total angular momentum to be just the sum of the angular momentum of all particles, i.e. a sum of
single particle contributions. Finally we must also require that both J; is a a pseudovector, i.e. that it transforms
as a vector under rotations and does not change sign under parity.



The orbital part of the angular momentum should depend only on the motion and not on the internal structure
of the fields. Then we expect it to have the same form of the free scalar field:

. . o -
Ly = ijkB/dQE am (k) (k:ak]) al (k), (1)

where B is an unknown coefficient. For the spin part we also require that no term proportional to k; or %
appears, since we expect its value to be independent of the momentum of the states on which it acts. Then the
only vector operator we can write which satisfies all the requirements is:

S, = ZGZ]kA/dQE az(lg)ajug)’ <2)

where A is an unknown coefficient.
As a first simple check one can verify that PJ; P = J;, where P is the parity operator. We recall that:

Pa;(k)P = —nya;(kp),  Pal(k)P = —npal(kp),  np=1.

Then one can check, using P2 =1,
PS;.CP = ’L'EijkA/dQ];Pai(E)PPa (E) = i€ijkA/dQE ai(Ep)a;(Ep) = i€ijk7712t>A/dQEP ai(Ep)a;(Ep) = Sk,

PL,P = ieijkB/dQE Pa,, (k)P <k 8‘}2 >Pa (k)P = ieijkm%Bs/dQEam(Ep) (kaaka> al (kp) = Ly,

where in both expressions we have changed the integration variable to kp.
To fix the coefficients, we have to impose the commutation rules:

[Ji, Jj] = iﬁijkjk. (3)
To make our task easier, we will impose the stronger condition:
[Si, SJ] = ieiijk and [L“ LJ] = iGijkLk. (4)

This is physically reasonable given the different nature of orbital and spin angular momentum. Formally this can
be justified noticing that for our guess [S;, L;] = 0. Let’s prove this:

N 0
Sk, = ~eueundB | aafylouRyal (). an@p 5 -oh )

Using [AB,CD] = A[B,C|D + CA[B, D] + [A,C]|BD + C[A, D|B and the commutation rules of creation and

annihilation operators

- -

lai(k), al ()] = (21)*2w;0:;0% (5 — k) = f(k)5:36° (5 — k),

where we have defined f(k) = (2m)?2wy; for convenience, we can evaluate the commutator:
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63 — Fai (F) <pai

p

— O - i) (» aip)aymf(%)ai(ma}(%) (pnjpp53<f%‘—ﬁ)).

These two terms under integration cancel. Indeed, recalling df2;; = r (k), the first gives:

- [ 4905 G0 - paih) (5 ) i) =~ [ a0 (- ) a1,



while, integrating twice by parts, the second is

[ 001 i Rral ) (=5 ) = [ Lol ) (-0~ )

Jorcari-a (onfyg )i ot g o
- [ a9 (pai) )

The two terms cancel and thus [S;, J;] = 0. Then the only way to realize the commutation rules (3) is to impose

(4).

Now we fix A from the commutation rules of S;:

1S5:5) = ~ensiern; 4* [ ddSsian (F), af (), o (Pl ()
sty A [ a0 [~ ah ()60 H(F)SE )+ (Pl (R (B ~ )
= —eriemm; A2 /dQE [fak(l;)a (B)S1m + am (F)af ( )5kn].
Using the identity e;jxeiim = 0;10km — 0jmdk twice, we find:
(5151 = 22 [ a9 ay(al () - as(Bra} ).

We could proceed in full generality, but it is slightly easier to choose i = 1, j = 2; then comparing the r.h.s with
eq. (2), we see:

(S, 5] = A2 / a9 [as (R)al(F) — ar (Ryal ()] = 1485,
Requiring the correct commutation rule, we fix A:
[51, SQ] =153 — A=1. (6)

Finally we repeat the same steps for L;. We have:
- 0
[L“LJ} = —Emnz€5t]BZ/dQEdQﬁ[ak(k)km%a ( ) Gl(mps (m]
The commutator is evaluated as those before:
- 0 T
(B 5l (). xPp. 5 -] ()
- 0 0 0 A 0 -
= — (R (£()9° (R — p*)akz) ps g ad () + @iy - (RO = D)) b 5l ()
"ok Opy
o pag a 3 8 a 7 3 g 8 -i- g
=~k (B 5 (FD8(F = 9) oy -al () + ax(Ppay - (f(k)5 (F = 5)) b5k (F)

Repeating the same steps we did in (5), we obtain:

L ; 9 .9
/ dQdS5 ay, (k) km 6k”( (2)8° (k — ﬁ?)ps b = / A @i (k) om ks g

KN Y O g 99
[ d0ci05 a0, (1B~ ) b ol B) = [ a0 ol )

n

Relabelling the integration variable in one of the two expressions, the commutator reads:

- 0 0 - - 8 0 -
[LZ-7Lj]—-/dQE {—ak(k)kmakn T (k)+ak(k) 8/# m g @ (k)



In both terms inside the parenthesis, one derivative can act either on a momentum, either on the operator a;, (l;)
However in the second case the contribution of the two terms cancel and we are left with!

0
5 [ doy |aulik £J<aau®m;;d@ﬂ,

where we have used €;jk€1m = 0;10km — 0jmOk. Again, we specialize to ¢ = 1, j = 2. Then comparison with (1)
shows:

) = -~ 0 - )
[Ll,LQ] = B? /dQ]-C‘ |:ak(k})ki1 Wa;rc(k‘) (k?)kig 8/€1 (k‘):l = —iBLs.
Finally we can fix B via the commutation rules (4):
[L17L2} =1il3 — B=-1. (7)

Exercise 1: Explicit computation

We now proceed and expand the above expressions in terms of raising and lowering operators. Recall the definitions:

where wy, = Vk2 + M? and we have decomposed the operator in transverse and longitudinal pieces:
ay (k) = Pha;(k), ari(k) = Pka;(k),
kik;
L _ 5. - L_q_pl
P;; = di; 12 P =1-P—.

In the appendix we compute the expression of the angular momentum in terms of the operators a(k) explicitly.
The result has the simple form:

-

Jp = iegn [ A {az (K)al (k) — am (k) (kiaij) ajn(ié)}.

The above expression is composed of two pieces, corresponding to the intrinsic spin carried by a state and the
orbital angular momentum. One can look for eigenstates of the 3rd component J3. In the reference frame in which
the particle is at rest this must correspond to the spin of the state. Let us consider the states:

al ia}
1 = b)), |ﬂ=<1mf%“®>m.

Applying J3 yields:

Ai%ﬁ/ﬂ%@ﬂm&m—@@Mw&(ﬂ@fg*m>m—i<ﬂ@i“&m)w—i&»

J5/0) = 0.

INote Wk =ni; = —0ij.
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Angular momentum in terms of creation operators

Let us start from the first piece:

€ijk / dBrILA;

= [ [ R S () 4 e

e / (ﬁé (‘;;’“)23 HZ(E VA, () (2736 (Ry + Fo) = eagn / d:“ T (—R) A, (F)

=i [ o (0 -B =l () (a4l ) 2 (an (B = L), (a0l ()

Keeping on expanding we get:
€ijk / d3x HiAj

— i [ s o | (ol ) — ol sy ) +

(ai(=Ryal,(~F) = al,(F)a; (F))

avi(~R)al,(=F) = al,(Ryar; (B)) + (avi(~R)al; (=F) - al,, (Bas; (F) )|

The additional terms we haven’t written are in some case odd in k, such that el-jkau(l;:')ag(fl;) or they will
cancel out with other terms coming from other pieces. We don’t need to keep track of them because all these
terms consist of two a or two at and we know a priori that they must cancel. The final expression for the Noether
charge must contain only terms linear in a and a' (it cannot mix states with different particle content) because,
since it is a conserved quantity, it commutes with the Hamiltonian, so it is diagonal in the basis of multiparticle
states \El, ey En) where H is diagonal.

We can finally rewrite the above expression as:

ik / (d3k J {aU(E)aL](E)+2ah<1‘5)am(12) (M+;2) (aLi(E)aij(E)—l—aJ_Z(E)aLj(E))] 8)

om)3 dw w

The second piece is:
— Eijk/d?)l‘ Hm iCZaJAm

B By
Eljk/ / 1 2 (kl)Am(kQ)elkl'w (xiajezkza:)

(2m)3 Mo

d3k 3k - R o0 7 .
_ 3 1 2 iky-T iko T
= _eijk'/d I/ (27T)3 (2W)3Hm(l{11)Am(k’2)6 <k2j8k§e >

where we have used the usual trick:

9
oxJ

kmTm _ —Z'kjeikmxm, K Tom _ xieikmrm )

(& (&

"ok

Thus, integrating over d3z we get:

d3ky - - 0 P,
— Gijk/dgfﬂ Hm xlf)‘JAm = —/ (277') d3k2 Hm(kl)Am(k2)Eijkk2j871%53(1451 —+ k‘g)

We can integrate by parts and get:

A3k . -
fﬁjk/di”x IL,, 2;0; Ay, :/ L By I, (k)8 (k1 + k) eijkk%—a. A (ko)
(2m)3 Ok

= —/ (;lj:;g IL,,, (k) <6Uk/€zaz]> A (=F).
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Notice that the minus in the last equality arises by changing the order of the indices ¢, j. This time IT and A are
contracted in a scalar product (but there is a differential operator in the middle). Rewriting the expressions in
terms of ladder operators will give four contributions which we consider one by one. The first one is:

/(gjr];a%i (al(_ )~ ai(E))m <€ijkki82j) (M(E) +a1(—/§))m = / éj:;g %aLm(E) (E”kk%ﬁfkﬂ> al (k).

Recalling that a (k) = PX a,(k) we have:

Bk —i - 0 - Bk —i S 9]
— e T T ek L
/ (27’()3 20 alm(k) eljkkl akj> am(k) + / (27_(_)3 2w aLm(k)Qr(k’) (Q]k‘,kz 8k3> Pm'r"

We need the following expression:

0 0 Ko kor
(Gijkk‘iakj) PnLW = <€”kkzakj> ((5mr — /472) = Gimkpil; + EiTkPiEna

!

where we must take care of the relation g:} = —0;;. Hence, substituting this gives:
Ek —i 0 . Bh —i L
——=—aim(k) ( €ijpkin— | al,(k — ——eimkaLm (k)b (K).
/(Qﬂ):a 2waL ( )<€jk 6k]>am< )+/ @n) 7 k@ im(k)ay (k) (9)

The second contribution is:

[ o (P = ehid), (conbigs ) (0Bl B,

This time the piece where the derivative acts on a,, is absent since we would get a Pt acting on az which gives
zero. Hence we only have:

_ / (;‘i’;g T (an (B~ al(B) (al) +al (-F)) (Mkai) pL
— /5771)63 4_—:}% {Gimk ar(—k) — aTL(l;))m (aL(E) +al (—E))i + €irk (aL(—E) - aTL(/Z)>i (a(;;’) + aT(_/;')>T}
Pk —i M
= [ Gy Tww Lo
The third contribution is:
/(;l:;g i% (‘M(—E) - GL(E»m (eijkkiaakj> (aL(E) + aTL(—E))m.

Also here we find the piece where the derivative acts on a,, to be absent since we would get a pPL acting on a
which is also zero. Hence the only contribution is

asi(B)al,(F) + asi(R)al,, ()} (10)

/ (;erlj?’ i% (aL(_E) - aﬂ_(lg))m (Q(E) + aT(—E))T (eijkkiaij) PL.

= [ et (e (02F) hB), (0nP+ o) }
/ (

ki w
(2m)3 4w M

Finally, the last term:
&k —i L 9 L &k o—i o\ + -
[ s 1 (onR = @) (eonbigs ) (0B 40l -D) | = [ s ann® (b ) abu®)
3k —i - 0 - B3k q - - - -
/ o7 20 ) k@k) “3“(’“”/ Gy 2w Lcombonm (Rali ) + empari(Fal, ()

Bk —i - 0 -
/ (27T)3 %a[,m(k) <€ijkkial€j> ajn(k) +

-,

€imuarm (Bl (F)} (12)




Collecting formulas (8),(9),(10),(11),(12), we find:

ki - -
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— (apm(K) + apm(k)) (kia, ajn(/‘é)}

Exercise 2

The angular momentum for a spin-1 massive free field is given by (see exercise 1):

T = ieijk/dQE {ai(E)a;(I;) ~ am(F) (kakj> ajn(/;‘)} .

The second part vanishes when acting on particles at rest, then we can isolate the spin:
Sy = i€ / dQza;(k)al (k).
That this is the generator of the internal (coordinate independent) part of rotations is confirmed by its action on
creation operators a;r (P):
3 Dal (7). af : d*k D). ot ot (B
1Si,a} (7)) = i€mai | | @*Qgam(R)al,(B),al ()| = iemni | o |am(R), al (7] a,(F)
(2m)32wy

) d*k - -
= 1€mni / W(Zﬂ')32wk’53(l€ — 13)577” ajl( ) ’LEJ,,“CL (m = Zez]na (k)
k

This shows that S rotates the creation operators a; (k:) between them, as it expected for the spin.

The operators aT(k) create massive spin-1 particles with momentum k then the most general massive spin-1 single
particle state in the rest frame is written as:

|@) = aa}(0) |0) = a - a'(0) [0).

Given the previous result and the fact that the vacuum is rotation invariant, Ji |0) = Si |0) = 0, we see that the
action of S} on such a state is:

Sk 1d@) = a; | Sk, al (0)] 10) = iexsjaial(0) [0
In particular for the z component we find:
S3 (aia;r((_)') |0>) = iegjiajaj(ﬁ) 0) = iaval |0) — iavpal |0).

We can now diagonalize S3 on such states. Since a basis for the states |&) is given simply by {ai(ﬁ) |0)}, the
equation
Sz |a®y = A, |d%) (no sum over a),

is equivalent to the matrix eigenvalue problem:

. 0 — 0 Qg a1
(iegjiaj — ai)a;((()) |0> =0 < 7 0 0 (o) =)\ (6%
0 0 0 Qs Qs

The eigenvalues of such a problem correspond to A = 1,0, —1, as it is to be expected for the spin of a spin 1
particle. The eigenvectors of this system are easily found:

1/v2 0 1/v2
A=1 — i/N2 |, A=0 — 0], A=-1 — —i/V2



Finally, let us compute S? = S;S; = 2 on single particle states:
S?|d) = SkSk|G) = Skierijaial(0)0) = —exjienijeua) [0) = 20,04a] |0) = 2|d) .

Here we used €gji€ri; = —26;;. We expect S2 = ((£ +1) on a spin £ state, hence this result confirms that |@) is a
spin 1 state.

Exercise 3

The momentum p* = (E,0,0,p) and the polarization vector e* = %(0, 1,4,0) satisfy the Lorentz-invariant
constraint p*e, = 0, in addition to the normalization conditions e*ej, = —1 and p"p, = M 2,
et is an eigenvector of helicity with eigenvalue +1, as can be seen recalling the helicity operator:

S o7 0 — O
h=l"_g—-| i 0o o],
71 0 0 O
and by applying it on €= (1,1¢,0).
After a transverse boost in the y direction:
v 0 8 0
0 1 0 O
A= ,
w0 oy 0
0 0 0 1
we find:
p* = (VE,0,9BE,p),
1
e = — (inB,1,iv,0).
7 (iv8,1,47,0)

Note that, correctly, p*cj, = 0.
In order to decompose this vector on a basis of vectors with definite helicity, it is convenient to first rotate the
three space in such a way as to align the new z direction to p’, namely to perform the transformation:

1 0 O 0
0 1 0 0
00 % =z
where k =y~ 11/p? + (yBE)2. So we get:
ﬁ“ = ’y (E7 07 07 k) )
8 1/ ip VBE
R 1,2 .
g \/5 (17/87 ) k ) k

The helicity basis is a set of polarization vectors £(;) with definite helicity; they satisfy the transversality condition
5’(;)]5# =0, Vi=—,0,+. In this frame they are:

1

é?—&-) = V2 (O’ L1, 0) )

1
- _ 1 .
€Ly = \/?(0,1, 1,0),
- Y
5(0) = M (k,0707E),

where the subscripts indicate the helicity eigenvalues.
Decomposing &% on this basis yields:

(VRN o (1-plk\ . (iBMY L,
E”_( 9 E(+)+ 5 5(7)"‘ E 6(0).




Note in particular that starting from a massive vector with positive helicity and performing a transverse boost,
results in a superposition of all possible helicity states. This is different from the case of a massless vector. Indeed,
it has been proven in Set17 (and it can be deduced here as well by taking the limit M — 0) that for the massless
case, starting with a positive helicity state, we end up with a positive helicity state (plus a longitudinal component).

Exercise 4

In general, a state with n-particles and m-antiparticles can be expressed as the superposition of eigenstates of the
momentum:

|®) = /daﬁl...dQﬁn A, . dQg,, F(Fry ooy Py Qs ooy G )l (P1) ol (5,) BT (1) .01 (G)[0).

In the simple case of a system consisting of a particle and an anti-particle in the center of mass (p; = —¢;) with
a defined angular momentum [ we have:

@) = / i f(7,~P)a (@)} (—F)[0),

where fi(p, —p) is the wave function describing a state with a given angular momentum (it is actually a superpo-
sition of spherical harmonics with total angular momentum [) and satisfies the property:

Ju@,=p) = (=1 fi(=p. ) -
Let us now perform a parity transformation: in general each particle acquires a multiplicative phase np but since

the antiparticle gets the same factor np and n% = 1 this factor never appears. In addition to this, the spatial
momenta are inverted:

P|®;) = /dQﬁ fi(@, —p) Pa' (p)PT PbT (—p)PT|0)
= [ 9 15— ol () ¥ )10)
= [ a5 (500 D8 -0) = (1))

where in the first line we have inserted PTP = 1 and we have used the invariance of the vacuum P |0) = |0). Note
also that PT = P, since we require that acting twice with parity has to be equal to the identity transformation,
thus POPT = PTOP for any operator O. Therefore a state made of a scalar particle-antiparticle pair with a given
angular momentum changes by a factor (—1)! under parity.

Let’s now consider a state consisting of a fermionic particle-antiparticle pair. We can write such a state as:

Ws) =3 [ a9 (F s Od 50 (-7 0]0),

where the two functions satisfy:

A0 =D fi=00),  xs(t.r) = (=1 xs(rt).

Notice that the transformation property for the spin function xg(r,t) reflects the fact that the product of two spin
1/2 states is symmetric if the total spin is 1 and is antisymmetric if the total spin is 0. Again we can apply the
parity operator:

Plves) =3 [ ds 5~ xs(rt) PG PPV )P 0)
r,t
=3 [ 405 5P xs(r 0 )V G0 10) = (1))

Notice that P doesn’t touch the spins.



